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Abstract
Purpose – The centrifugal instability mechanism of boundary layers over concave surfaces is responsible
for the development of quasi-periodic, counter-rotating vortices aligned in a streamwise direction known as
Görtler vortices. By distorting the boundary layer structure in both the spanwise and the wall-normal
directions, Görtler vortices may modify heat transfer rates. The purpose of this study is to conduct spatial
numerical simulation experiments based on a vorticity–velocity formulation of the incompressible Navier–
Stokes system of equations to quantify the role of the transition in the heat transfer process.
Design/methodology/approach – Experiments are conducted using an in-house, parallel, message-
passing code. Compact finite difference approximations and a spectral method are used to approximate spatial
derivatives. A fourth-order Runge–Kutta method is adopted for time integration. The Poisson equation is
solved using a geometric multigrid method.
Findings – Results show that the numerical method can capture the physics of transitional flows over
concave geometries. They also show that the heat transfer rates in the late stages of the transition may be
greater than those for either laminar or turbulent ones.
Originality/value – The numerical method can be considered as a robust alternative to investigate heat
transfer properties in transitional boundary layer flows over concave surfaces.

Keywords Heat transfer enhancement, Incompressible flow, Spectral method,
Compact finite difference approximations, Görtler vortices, Spatial numerical simulation

Paper type Research paper

1. Introduction
The practical interest in intensifying surface heat transfer rates with the least penalty
follows the need of reducing energy consumption via more efficient systems (Liu, 2008). The
design of such efficient systems demands comprehension of the problem under
consideration. Specifically, in thermal boundary layer flows, great advances have been
achieved in both theoretical (Saffmann, 1995) and experimental (Fiebig, 1996) fields. Fiebig
(1996) analyzed the influence of the generation and development of streamwise vortices on
heat transfer rates. It can be observed that vortex generators of the winglet type cause a great
loss to the system because, although it can double the rate of heat transfer, it almost
quadruples the drag. The author supported that the longitudinal vortices are more effective
than the transverse ones for heat transfer enhancement. He also underlined that transverse
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vortices may lead the flow to turbulence at lower Reynolds numbers than the longitudinal
ones.

The geometry of the wall may also modify the transition process. Imbalances between the
centrifugal force and the pressure gradient in the wall-normal direction can anticipate
turbulence (Saric, 1994). In boundary layer flows, this centrifugal instability is commonly
referred to as the Görtler instability. This instability is important from a practical point of
view, as the Görtler vortices may be observed in flows over turbine blades and combustion
chambers (Biegger and Weigand, 2015). Görtler vortices are responsible for generating
strong distortions in the velocity profiles (Liu and Lee, 1995). As the vortices are
counter-rotating, two regions arise between them: the upwash and the downwash regions.
The downwash region is responsible for compressing the boundary layer toward to the wall
and, as a consequence, for increasing the heat transfer rates. The upwash region does the
opposite.

The cross-sectional heat advection distribution obtained with Görtler flow is different
from the one obtained with a laminar boundary layer on a flat surface. To explicit these
differences, experimental studies were conducted, and they showed that the heat transfer
enhancement in Görtler flows can be higher than that observed in turbulent flows
(Peerhossaini, 1987). Momayez and Peershossaini (2004) and Momayez et al. (2004)
conducted experiments to understand the effects of Görtler vortices and their transition to
turbulence on heat transfer from the wall to the boundary layer.

Tandiano et al. (2009) studied the development of wall shear layer stress in a concave
surface boundary layer flow in the presence of Görtler vortices. They analyzed the flow by
hot-wire measurements, and vertical perturbation wires were adopted to introduce
perturbations in a selected wavelength. The authors concluded that the spanwise-averaged
wall shear stress coefficient Cf, which initially follows the Blasius curve, increases well
above the local turbulent boundary layer value further downstream because of the nonlinear
effects of Görtler instability and secondary instabilities.

Liu (2008) conducted studies to explain theoretically the rate of heat transfer in a
boundary layer flow over a slightly concave surface. His conclusion reaffirms that one may
greatly enhance the heat transfer, although paying the price of almost one to one in drag.

Görtler was the first to discuss the evolution of the streamwise vortices. Görtler assumed
the problem was locally parallel and applied a normal-mode analysis to discuss how
instabilities may occur if a dimensionless parameter (later named as the Görtler number)
exceeds a critical value.

In general, numerical studies regarding the evolution of the Görtler vortices rely on
normal modes or marching procedures. Historically, different neutral curves were obtained
through the local/nonlocal assumption. Remarkable discussions regarding this topic are
provided by Floryan and Saric (1982), Hall (1982) and Floryan (1991). A comprehensive
discussion about the Görtler instability is provided by Saric (1994).

A parabolized formulation was adopted by Liu and Lee (1995) to numerically study the
influence on the Prandtl number in the heat transfer rates of boundary layer flows over a
concave wall. They studied flows with three different Prandtl numbers ( Pr � 0.72, 1.00 and
7.07). The spanwise wavenumber was the same, obtained experimentally by Swearingen and
Blackwelder (1987). Their results showed that one could achieve high gains in heat transfer
rates in the presence of Görtler vortices. Momayez et al. (2009) support this conclusion and
also show that the intensification of heat transfer is related to the growth of Görtler vortices
under the effect of centrifugal instability and, secondary instabilities.

Schrader et al. (2011) identify a lack in spatial direct numerical simulation studies of
Görtler flow. The authors provided a detailed investigation of the receptivity of the Görtler

HFF
27,1

190



www.manaraa.com

boundary layer because of both free-stream turbulence and localized wall roughness. Results
provided by them support that receptivity is linear for most of the tested cases and
free-stream turbulence is more effective in exciting the vortices than the localized wall
roughness. However, heat transfer analysis was not discussed in their paper.

In the present paper, the influence of the centrifugal instability in heat transfer
enhancement is investigated using a spatial numerical simulation code. The same physical
parameters provided by Mitsudharmadi et al. (2004, 2005, 2006) have been adopted. We
explicit benefits of the use of high-order finite difference schemes combined to a wall-normal
stretching technique to effectively capture the physics of the heat transfer phenomenon in
Görtler flows.

2. Formulation
The incompressible, unsteady system of equations with constant density and constant
viscosity is chosen to represent the flow of a Newtonian fluid over a concave surface.
Defining vorticity as the negative curl of the velocity vector, and using the fact that both the
velocity and the vorticity fields are solenoidal, one can obtain the following vorticity
transport equations:
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where:

ã � �̃xṽ � �̃yũ, (4)

b̃ � �̃zũ � �̃xw̃, (5)

c̃ � �̃yw̃ � �̃zṽ, (6)

d̃ � ũ 2, (7)

are the nonlinear terms resulting from convection, vortex stretching, vortex bedding and the
curvature influence, respectively. The variables ( ũ, ṽ, w̃, �̃x, �̃y, �̃z) are the dimensionless
velocity and vorticity components in the streamwise (x), wall normal (y) and spanwise (z)
directions; t is the time. The �2 operator is as follows:
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The continuity equation is given as follows:
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The adopted heat transfer transport equation is given as follows:
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where �̃ is the nondimensional temperature given by �̃ � (T � T0)/(T	 � T0), where T is the
dimensional temperature, and T	 and T0 are the dimensional temperature values that are at
a considerable distance from the thermal boundary layer and at the wall, respectively. The
reference length is a plate characteristic length L and the reference velocity is the freestream
velocity U	. The Reynolds number is given by Re � U	L/
, where 
 is the kinematic
viscosity. The Görtler number is given by Go � (Kc�Re)1/2. The terms Go 2�d̃ / �x/�Re and
Go 2�d̃ / �z/�Re are the leading order curvature terms, where Kc � L/R is the wall curvature
and R is the curvature radius (Floryan and Saric, 1982). The Prandtl number is given by
Pr � 
/�, where � is the thermal diffusivity of the fluid.

Taking the definition of the vorticity and equation (9), one can obtain Poisson-type
equations for each velocity component as follows:
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2.1 Disturbance formulation
Flow variables �̃ � �u,̃, ṽ, w̃, �̃x, �̃y, �̃z} are decomposed in baseflow and perturbation parts
as follows:

�̃ � �b � �, (14)

where subscript b indicates a baseflow quantity. The baseflow is assumed to be
two-dimensional, i.e. only ub, vb, �zb and �b should be considered. Both baseflow and
perturbation quantities are assumed to satisfy the system of equations.

By introducing equation (14) in the equations (1)-(3) and (10)-(13) and by subtracting
baseflow quantities, the evolution of disturbances can be represented as follows:
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where the nonlinear terms a, b, c, d, e, f and g are calculated as follows:

a � �x(vb � v) � �y(ub � u), (23)

b � (�zb � �z)(ub � u) � �x �, (24)

c � �y� � (�xb � �z)(vb � v), (25)

d � 2ubu � u 2, (26)

e � ub� � u�b � u�, (27)

f � vb� � v�b � v�, (28)

g � �(�b � �). (29)

The necessary boundary conditions to close the system of equations are discussed in the next
section.

3. Numerical method
The system of equations (15)-(22) is solved in a computational domain illustrated in
Figure 1. The numerical solution of the Görtler problem follows the procedure described
by Kloker et al. (1993), Souza et al. (2004) and Malatesta et al. (2013).

3.1 Spectral approximation
The flow is assumed to be periodic in the spanwise direction. Therefore, flow variables can be
represented by the use of K � 1 spanwise Fourier modes as follows:


(x, y, z, t) � �
k�0

K

�k(x, y, t)e i�kz. (30)

where:


 � �u, v, w, �x, �y, �z, �, a, b, c, d, e, f, g�,

�k � �Uk, Vk, Wk, �xk, �yk, �zk, �zk, Ak, Bk, Ck, Dk, Ek, Fk, Gk�,

�k is the spanwise wavenumber given by �k � 2�k/�z, �z is the spanwise wavelength of the
fundamental spanwise Fourier mode and i � ��1 .
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In this sense, the vorticity transport equations (15)-(17), the velocity Poisson equations
(18)-(20) and the heat transfer transport equation (21) can be expressed in the Fourier space
(for any k Fourier mode) as follows:
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Figure 1.
Computational domain
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Equations (31)-(37) are solved numerically in the domain that is shown schematically in
Figure 1. The calculations are performed considering an orthogonal and y-stretched grid
parallel to the wall. The fluid enters in the computational domain at x � x0 and exits at
x � xmax. Disturbances are introduced into the flow field using spanwise suction and blowing
in a strip at the wall. This strip is located between x1 and x2. In the region located between x3
and x4, a buffer domain technique (Kloker et al., 1993) was implemented to avoid wave
reflections at the outflow boundary.

The time derivative in the vorticity transport equations is discretized with a classical
fourth-order Runge–Kutta integration scheme. The spatial derivatives are calculated using a
high-order compact finite difference scheme shown by Souza et al. (2005). The V-Poisson
equation – equation (35) – is solved using a multigrid Full Approximation Scheme (Stüben
and Trottenberg, 1981). A V-cycle with four levels is implemented (Rogenski et al., 2014).

In these simulations, a two-dimensional Navier–Stokes solution based on the Blasius
similar solution is used as the baseflow. The solution is obtained by assuming that the flow
quantities are constant in the spanwise direction, i.e. only mode k � 0 is taken into account.
The simulation is performed until the maximum difference between the spanwise vorticity
component at two consecutive time steps is smaller than 10�8.

The code is parallelized through a domain decomposition technique in the streamwise
direction. Communications between subdomains are provided by the use of the Message
Passing Interface (MPI) library.

3.2 Boundary conditions
The system of governing equations is closed by the specification of boundary conditions. At
the wall ( y � 0), the no-slip condition is imposed for the streamwise (Uk) and the spanwise
(Wk) velocity components. The wall-normal velocity component (Vk) is specified at a suction
and blowing strip region located between x1 and x2, where the disturbances are introduced.
Away from the disturbance generator, this velocity component is set to zero. The function
used for the wall-normal velocity Vk�1 is calculated as follows:

Vk�1(i, 0, t) � A sin 3(�) for x1 � x � x2 (38)

where � � (x � x1)/(x2 � x1)and A is a real constant chosen to adjust the amplitude of the
disturbance. The adopted function assures that the wall-normal velocity component and
its first and second derivatives are continuous along the wall. For all modes but k � 1,
Vk(x,0, t) � 0.

At the inflow boundary (x � x0), the velocity, the vorticity components and the
temperature are specified based on the similarity solutions. At the outflow boundary (x �
xmax), the second derivatives with respect to the streamwise direction of the velocity and
vorticity components are set to zero. At the upper boundary ( y � ymax), the flow is considered
nonrotational. The ymax position is prescribed by adopting at least three times the boundary
layer thickness at the outflow boundary. Setting all vorticity components to zero satisfies the
nonrotational condition. The wall-normal velocity component at the upper boundary is
settled according to the following condition:

�Vk

�y
�x,ymax,t � 0. (39)

This condition is imposed in the solution of the Vk velocity in the Poisson equation (35). The
equations used for evaluating the vorticity components at the wall are as follows:
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A damping zone near the outflow boundary is defined in which all the disturbances were
gradually damped down to zero (Kloker et al., 1993). This technique is used to avoid
reflections in the outflow boundary. Meitz and Fasel (2000) adopted a fifth-order polynomial,
and the same function is used in the present code. The basic idea is to multiply the vorticity
components by a ramp function f1(x) after each sub-step of the integration method. Using this
technique, the disturbance vorticity components are taken as follows:

�k(x, y, t) � f1(x)�k
*(x, y, t), (42)

where �k
*(x,y,t) is the disturbance vorticity component that results from the Runge–Kutta

integration, and f1(x) is a ramp function that goes smoothly from 1 to 0. The implemented
function is as follows:

f1(x) � f(�) � 1 � 6� 5 � 15� 4 � 10� 3, (43)

where � � (x � x3)/(x4 � x3) for x3 � x � x4. To ensure good numerical results, a minimum
distance between x3 and x4 and between x4 and xmax has to be adopted (Kloker et al., 1993). In
the present simulations, 30 grid points are adopted in each region.

Another buffer domain, located near the inflow boundary, is also implemented in the code.
As pointed out by Meitz (1996), in simulations involving streamwise vortices, reflections due
to the vortices at the inflow can contaminate the numerical solution. The damping function
is similar to the one used for the outflow boundary:

f2(x) � f(�) � 6� 5 � 15� 4 � 10� 3, (44)

where � � (x � 1)/(x1 � 1) for 1 � x � x1. All the disturbance vorticity components are
multiplied by this function in this region.

The boundary conditions for the disturbance temperature are as follows:
• at the inflow boundary, we impose �k � 0;
• at the outflow boundary, we also impose �k � 0 , as the same buffer domain for

vorticity was also applied for the temperature; and
• at the wall, �k � 0.

The method and code adopted in the present paper have been validated and verified for the
hydrodynamic boundary layer by Malatesta et al. (2013).

3.3 Wavenumber analyses of compact finite difference schemes in non-uniform meshes
Following studies of Lele (1992) and Gamet et al. (1999), wavenumber Fourier analyses of the
spatial finite difference schemes are conducted by considering a single Fourier mode
f(x) � e i�s, where � is the scaled wavenumber. Analytical first and second derivatives of that
mode with respect to x are given by f = � i�f and f " � �� 2f.

The use of finite difference schemes to approximate the first derivative of a Fourier mode
can be expressed by fd

= � i� =(�)f. In this expression, the function � = is well known as the

HFF
27,1

196



www.manaraa.com

modified wave number. The relation � =(�) � � represents exact differentiation. In the same
way, considering that fd

== � � � ==(�)f, numerical second derivatives’ errors can be estimated
by a distance between � 2 and � ==.

3.3.1 Resolution of spatial numerical schemes. The high-order compact finite difference
approximations are used to calculate spatial-derivative quantities. The first-derivative
relation for centered (c) schemes has the following form:

�k�1
(c ) fk�1

= � �k
(c )fk

= � �k�1
(c ) fk�1

= � ak�2
(c ) fk�2 � ak�1

(c ) fk�1 � ak
(c )fk

�ak�1
(c ) fk�1 � ak�2

(c ) fk�2 � 0,
(45)

where �k
(c ) and ak

(c ) are the finite difference coefficients associated with the stencil position k.
The constants for a uniform grid can be found in the study by Lele (1992). Stretching factors
of 2 and 5 per cent are also considered for comparison. Compact finite difference coefficients
for the centered first-derivative stencil provided by equation (45) with the previous
stretching factors are presented in Table I.

Figures 2(a) and (b) show the comparison of the real and imaginary parts of modified
wavenumber versus wavenumber for the present approximation. It is worth noting that the
real part of the wavenumber is associated with dispersive errors, while the imaginary part is
connected with dissipative ones (Lele, 1992).

As can be seen in Figure 2(a), small variations in the stretching factor do not lead to
drastic shape variations in the real part of the modified wavenumber. However higher the
stretching factors, lesser the set of well-resolved waves. Figure 2b shows that in the uniform
mesh case, the modified wavenumber is real-valued, as expected. Inevitably, the loss of
symmetry due to the stretch introduces dissipative errors for high wavenumbers.

The second-derivative analysis follows the same form of the previous derivative case.
The same comparison taking into account stretching factors of 2 and 5 per cent is considered.
Real and imaginary parts of the function �== are represented by Figure 3(a) and (b). Table I
also presents the compact finite coefficients for the second-derivative approximation.

Table I.
Compact finite

difference coefficients
for a stencil provided
by equation (45) with

sf � 1.00, 1.02 and 1.05

Coefficients sf � 1.00 1.02 1.05

�k�1
(c ) 0.333333 0.346755 0.367209

�k
(c ) 1 1 1

�k�1
(c ) 0.333333 0.320348 0.302103

ak�2
(c ) 0.0277778 0.0303514 0.0344917

ak�1
(c ) 0.777778 0.780828 0.784364

ak
(c ) 0 �0.0576701 �0.136054

ak�1
(c ) 0.777778 �0.729578 �0.663595

ak�2
(c ) �0.0277778 �0.0239318 �0.0192063

�k�1
(c ) 0.181818 0.175976 0.165648

�k
(c ) 1 1 1

�k�1
(c ) 0.181818 0.186814 0.192812

bk�2
(c ) �0.0681818 �0.0651007 �0.0590515

bk�1
(c ) �1.09091 �1.03894 �0.970319

bk
(c ) 2.31818 2.18512 2.0062

bk�1
(c ) �1.09091 �1.01844 �0.922459

bk�2
(c ) �0.0681818 �0.0626328 �0.0543688
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3.4 Boundary approximations for the first and second derivatives
Numerical approximations near the boundaries are generally non-central and non-periodic.
In this sense, resolution characteristics for such type of approximations should be considered
in only a heuristic level (Lele, 1992). For the first-derivative calculations, stencils for the
boundary (first point – f) and next to the boundary (second point – s) are here taken as
follows:

�k
(f )fk

= � �k�1
(f ) fk�1

= � ak
(f )fk � ak�1

(f ) fk�1 � ak�2
(f ) fk�2

�ak�3
(f ) fk�3 � ak�4

(f ) fk�4 � 0,
(46)

and:

�k�1
(s ) fk�1

= � �k
(s )fk

= � �k�1
(s ) fk�1

= � ak�1
(s ) fk�1 � ak

(s )fk � ak�1
(s ) fk�1

�ak�2
(s ) fk�2 � ak�3

(s ) fk�3 � ak�4
(s ) fk�4 � 0.

(47)

Figure 2.
First derivative real (a)
and imaginary (b)
wavenumber analysis
of a centered compact
stencil [equation (45)]

Figure 3.
Second derivative real
(a) and imaginary (b)
wavenumber analysis
of a centered compact
stencil [similar to
equation (45)]
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By the use of these two stencils, it is possible to obtain fifth- and sixth-order
approximations. Table II presents a set of coefficients for the first derivative cases.
Second derivative approximations of the same order can be generated based on the same
stencils with an additional coefficient associated with the position k � 5. Coefficients for
non-centered second-derivative approximations with sf � 1.00, 1.02 and 1.05 are
presented in Table III.

Spectral resolution analyses of the first-point scheme considering both first and second
derivatives are presented in Figures 4 and 5. Moreover, analyses taking into account the first
and second derivatives for the second-point scheme are showed in Figures 6 and 7,
respectively.

Table II.
Compact finite

difference coefficients
for the non-centered

first-derivative stencils
provided by equations
(46) and (47) with sf �

1.00, 1.02 and 1.05

Coefficients sf � 1.00 1.02 1.05

�k�1
( f ) 1 1 1

�k
( f ) 4 3.88388 3.72325

ak
( f ) 3.08333 3.06443 3.03703

ak�1
( f ) �0.666667 �0.83083 �1.04601

ak�2
( f ) �3 �2.74499 �2.41269

ak�3
( f ) 0.666667 0.580411 0.473975

ak�4
( f ) �0.0833333 �0.0690167 �0.523034

�k�1
(s ) 1 1.00051 0.997634

�k
(s ) 6 6 6

�k�1
(s ) 2 2.28768 2.6604

ak�1
(s ) 3.38333 3.38321 3.37543

ak
(s ) 2.5 2.5 2.5

ak�1
(s ) �6.33333 �6.10104 �5.83625

ak�2
(s ) 0.666667 0.363495 0.0333311

ak�3
(s ) �0.25 �0.167716 �0.0837953

ak�4
(s ) 0.0333333 0.0220455 0.0112866

Table III.
Compact finite

difference coefficients
for the non-centered

second-derivative
stencils provided by

stencils similar to
equations (46) and (47)

with sf � 1.00, 1.02
and 1.05

Coefficients sf � 1.00 1.02 1.05

�k�1
( f ) 780 780 780

�k
( f ) 8220 8264.34 8366.46

bk
( f ) �9775 �9800.96 �9866.53

bk�1
( f ) 20285 20229.7 20177.6

bk�2
( f ) �11170 �11218.2 �11228.4

bk�3
( f ) 550 755.221 955.328

bk�4
( f ) 145 53.9216 �32.0263

bk�5
( f ) �35 �19.6781 �5.97994

�k�1
(s ) 360 360 360

�k
(s ) 4320 4291.93 4265.04

�k�1
(s ) 1080 1102.81 1125.51

bk�1
(s ) �4834 �4812.8 �4790.54

bk
(s ) 8424 8424 8424

bk�1
(s ) �1890 �2178.65 �2518.42

bk�2
(s ) �2320 �1886.49 �1399.99

bk�3
(s ) 810 581.935 355.846

bk�4
(s ) �216 �144.223 �78.8998

bk�5
(s ) 26 16.2172 8.00536
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Although Figures 4-7 have only a heuristic approach, the present analyses are good in
showing that the use of small stretching factors preserves the shape of the modified
wavenumber for all the non-centered schemes here discussed.

3.5 Verification
The numerical verification and validation of the hydrodynamic code was performed by
Souza et al. (2004). The adopted code was also verified and the model was validated in
cases where no curvature is considered (Petri et al., 2015). Regarding the heat transfer
analysis, the verification is performed by comparing our numerical results with the ones
provided by Liu and Lee (1995). Dimensional parameters are in accordance with the
experiments of Swearingen and Blackwelder (1987). The wall curvature is R � 3.2 m and
the freestream velocity is U	 � 5 m.s �1. The characteristic length adopted is L �
0.1 m. The Reynolds number based on this characteristic length is Re � 33,124. It is
considered as �z � 1.8 � 10�2 m , which corresponds to a nondimensional wavenumber
of � � 34.90.

Figure 4.
First derivative real (a)
and imaginary (b)
wavenumber analysis
of a full non-centered
compact stencil
[equation (46)]

Figure 5.
Second derivative real
(a) and imaginary (b)
wavenumber analysis
of a full non-centered
compact stencil
[similar to equation
(46)]
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Comparison is carried out in terms of heat transfer rates. They are here represented by the
Nusselt number normalized by the corresponding value of the Blasius laminar boundary
layer. The Nusselt number (Nux) is giving by the following equation:

Nux � qwall
x

k(T0 � T	)
, (48)

where qwall is the heat flux at the wall as follows:

qwall � �k �T
�y �wall. (49)

Figure 8 shows spanwise distributions of local surface heat transfer rates for Pr � 0.72 at
three different streamwise positions. A good agreement between the results of the current

Figure 6.
First derivative real (a)

and imaginary (b)
wavenumber analysis

of a decentered
compact stencil

[equation (47)]

Figure 7.
Second derivative real

(a) and imaginary (b)
wavenumber analysis

of a non-centered
compact stencil

[similar to
equation (47)]
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study and those in the literature can be observed. Figure 9 shows the result obtained for
Pr � 7.07. Some deviations can be observed in the downwash region because of a better
numerical resolution obtained by our code. One may also observe agreement with the
literature in the upwash region.

4. Results
The adopted parameters in the following simulations are as follows: U	 � 3 m.s �1, 
 �
1.57 � 10�5 m 2.s �1, Re � 38,336; Go � 2.389 and Pr � 0.72. The set of physical parameters
is in agreement with that mentioned by Mitsudharmadi et al. (2004, 2005 2006). The
disturbances are introduced in the region 1.049 � x � 1.1715 with constant A �
6 � 10�3.

Figure 8.
Local spanwise
distribution of the
Nusselt number,
normalized by the
corresponding
Blasius–Pohlhausen
flat-plate value at the
same respective
Prandtl number Pr �
0.72 (x from 40 to
120 cm; �x � 40 cm)

Figure 9.
Local spanwise
distribution of the
Nusselt number,
normalized by the
corresponding
Blasius–Pohlhausen
flat-plate value at the
same respective
Prandtl number Pr �
7.07 (x from 40 to
120 cm; �x � 40 cm)
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A mesh refinement test was performed to check the grid independency. Three main groups were
considered in accordance with parameters provided by Table IV. With the first group formed by
(C1 � C2 � C3) cases, the influence of the Fourier modes was investigated. The investigation of
the streamwise step-size dx was conducted by the second group, formed by (C4 � C5 � C6) cases.
With the group formed by (C3 � C5 � C7) cases, the variation of the wall-normal step-size dy was
verified. For comparison, the y � maximum of the spanwise root mean square (RMS) of both the
streamwise velocity component and the temperature distribution is considered as a metric.

In Figure 10, the maximum values of the RMS metric are provided for the first group. Full
lines represent the evolution of the streamwise velocity component and the dashed lines
denote the temperature evolution. In Figures 11 and 12, the metrics are provided for the
second and third groups, respectively.

There are no observable differences between the results when comparing the group formed by
C1, C2 and C3 cases (Figure 10). In Figure 11, the same conclusion may be observed for the group
formed by C4, C5 and C6 cases. For the group formed by C3, C5 and C7 cases (Figure 12), it can
be observed that the mesh refinement in the wall-normal direction can affect the results. However,
it can be noticed, by this group comparison, that the results lead to the C3 case.

Simulations are performed by considering meshes finer than the ones provided by
Malatesta et al. (2013). The adopted mesh parameters are also finer or equal to the finest
parameters mentioned in Table IV. An investigation regarding the parallelization
independency was conducted in the development phase of the adopted code. Results
provided were independent from the number of processing elements considered.

Table IV.
Grid independency

test cases.

Case Nx dx Ny dy sf K � 1

C1 793 5.197 � 10�3 201 4.0 � 10�4 1.01 7
C2 793 5.197 � 10�3 201 4.0 � 10�4 1.01 9
C3 793 5.197 � 10�3 201 4.0 � 10�4 1.01 11
C4 601 6.86 � 10�3 121 8.0 � 10�4 1.01435 11
C5 793 5.197 � 10�3 121 8.0 � 10�4 1.01435 11
C6 1177 3.5 � 10�3 121 8.0 � 10�4 1.01435 11
C7 793 5.197 � 10�3 161 6.0 � 10�4 1.010725 11

Notes: In the (C1 � C2 � C3) cases, we increase Fourier mode resolution; the (C4 � C5 � C6) case provides
streamwise step-size variation; the (C3 � C5 � C7) cases differ by y�resolution.

Figure 10.
The y � maximum of
the spanwise RMS of
both the streamwise
velocity component

(full lines) and the
temperature

distribution (dashed
lines) for the group

formed by (C1 � C2 �
C3)cases
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In all simulations, the computational domain is divided in the streamwise direction into
N � 8 parts. The distance between two consecutive points in the x direction is dx �
3.5 � 10�3 . In the wall-normal direction, the first distance between consecutive points is
dy � 4 � 10�4 and a stretching factor of 1 per cent was adopted. The number of points in the
x and y directions are Nx � 1177 and Ny � 201, respectively; the time step is dt �
4.3 � 10�4. In the z direction, 21 Fourier modes are used with 64 points in the physical space.

The energy is analyzed, and for each Fourier spanwise mode, it is calculated by the
following equations:

Ek � 	
0

	

(�Uk�2 � �Vk�2 � �Wk�2) dy, (50)

for k � 0, and:

Ek �
1
2 	

0

	

(�Uk�2 � �Vk�2) dy, (51)

for k � 0.

Figure 11.
The y�maximum of
the spanwise RMS of
both the streamwise
velocity component
(full lines) and the
temperature
distribution (dashed
lines) for the group
formed by (C4 � C5 �
C6) cases

Figure 12.
The y�maximum of
the spanwise RMS of
both the streamwise
velocity component
(full lines) and the
temperature
distribution (dashed
lines) for the group
formed by (C3 � C5 �
C7) cases
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Figure 13 shows the energy development as a function of Rex for the first 11 Fourier modes.
Here Rex � U	x/
 can be considered as a streamwise distance from the leading edge.
Between the Rex equals to 5.0 � 104 and 8.0 � 104, the Görtler vortices show a linear growth.
Downstream, when their amplitude is already high, nonlinear effects became relevant. The

Figure 13.
Energy distribution

for each Fourier mode
in the streamwise

direction

Figure 14.
Distribution of

maximum disturbance
amplitude shows the
nonlinear growth of

vortices in the
boundary-layer flow
on a concave surface
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nonlinear region is characterized by the formation of a mushroom-like structure in the
crosscut plane ( y � z). After Rex � 1.0 � 105, the vortices saturate, i.e. almost all modes
remain with a constant amplitude.

In Figure 14, the development of the maximal disturbance velocity Umax for each spanwise
mode is also presented as a function of the dimensional streamwise position. The data are
made dimensional to allow comparison with the experimental data from Mitsudharmadi
et al. (2004). One can observe accordance between the numerical (full line) and the
experimental data (square symbols) for the fundamental mode.

Figure 15.
Crosscut planes (y � z)
of the streamwise
velocity for different
streamwise positions
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The contours of the streamwise velocity in crosscut planes (y � z) are presented in
Figure 15 (a)-(h). In Figure 15(a), one may notice inflections in the velocity profile
generated by the presence of the Görtler vortices. From Figure 15(b)-(h), both upwash
and downwash regions can be clearly observed.

The streamwise evolution of the spanwise-average Stanton number (Stx) is showed in
Figure 16. The spanwise-average Stanton number is calculated by the sum of the Stanton
number at each spanwise grid position divided by the total number of points in this direction.
Stanton distributions in the upwash (represented by triangles in the Figure 16) and
downwash regions (represented by delta symbols) are also presented in Figure 16. Both
laminar and turbulent theoretical curves are presented for comparison. In the linear region,
one may notice that the spanwise-average Stanton number follows the laminar Stanton
distribution as follows:

Stlaminar � 0.453 Pr �0.667Rex
�0.5

It can be observed that, after Rex � 4.0 � 104, the Görtler flow intensifies the heat transfer. At
Rex � 1.8 � 105, one may observe that the transitional flow reaches Stanton numbers at 393
and 123 per cent higher than laminar and turbulent flows, respectively. The turbulent
Stanton distribution is represented by the following function:

Stturbulent � 0.029Pr �0.57Rex
�0.2.

5. Conclusion
The described numerical simulation technique provided to be a robust and an easy
alternative aimed to effectively investigate heat transfer properties in transition flows over
concave surfaces with spanwise periodicity. The use of stretched, high-order, compact finite
difference approximations showed to be a reliable alternative to reduce the number of

Figure 16.
The streamwise
evolution of the

spanwise-averaged
Stanton number
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discretization points and to preserve grid resolution in the boundary layer region. The
numerical procedure is successfully verified. We support literature conclusions in which the
transition phenomena may increase heat transfer rates above the laminar and turbulent flow
regimes. We strongly believe that the study of the influence of the Görtler flow on the
development of secondary instabilities is a natural and important extension of the described
study.
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